Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Environ Res ; 252(Pt 2): 118821, 2024 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-38615793

RESUMO

How microzooplanktonic ciliate adaptative strategies differ across diatom bloom and non-diatom bloom areas in the Arctic Ocean remains poorly documented. To address this gap, two different situations were categorized in the Arctic Ocean at summer 2023: diatom bloom stations (DBS) (genus Thalassiosira, chain-like) and non-diatom bloom stations (nDBS). Total abundance of ciliate at 3 m and 25 m in DBS was 2.8 and 1.8 folds higher than in nDBS, respectively. Aloricate ciliates were singled out in both DBS and nDBS, whilst their average abundance and biomass of large size-fraction (>50 µm) in former were 4.5-5.6 folds higher than in latter. Regarding tintinnids, high abundance of Ptychocylis acuta (Bering Strait species) mainly occurred at DBS, coupled with distribution of co-occurring Pacific-origin species Salpingella sp.1, collectively suggested a strong intrusion of Pacific Inflow during summer 2023. Additionally, presence of high abundance of Acanthostomella norvegica and genus Parafavella in nDBS might indicate the trajectory of the Transpolar Drift. Alternatively, tintinnids can serve as credible bioindicators for either monitoring currents or evaluating microzooplankton Borealization. Average abundance of total ciliate within 15-135 µm body-size spectrum in DBS was higher than nDBS. Moreover, spearman's rank correlation between biotic and abiotic analysis revealed that temperature and dissolved oxygen at DBS determined tintinnid species richness and ciliate total abundance, respectively. The results clearly demonstrate that remarkable divergences in large size-fraction of ciliate abundance between DBS and nDBS validate their irreplaceable role in controlling phytoplankton outbreak and associated biological processes in polar seas.

2.
Mar Pollut Bull ; 141: 1-8, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-30955713

RESUMO

As mariculture expands offshore in response to the increasing demand for seafood, a new set of ecological concerns arises. We report on presented phosphate and silicate deficiencies in spring in the Zhangzi Island area, northern Yellow Sea, used for farming scallops. Silicon limitation was observed at up to 77.3% of stations, with an average silicate concentration as low as 1.7 µM in March 2014. Average phosphate concentration decreased from 0.12 to 0.05 µM from March to May. Stoichiometric ratios and absolute concentrations indicate that 78%-90% of stations showed phosphate limitation. Correspondingly, the phytoplankton community shifted from predominately diatoms to dinoflagellates. The higher frequency of nutrient limitation in farmed areas, compared with unseeded areas and northern Yellow Sea in general, imply intensified bottom-up controls on scallop production. The "bottle-neck" effect of limited food availability in spring suggests that carrying capacity was originally overestimated, when calculated from annual primary production.


Assuntos
Aquicultura/métodos , Diatomáceas/fisiologia , Dinoflagellida/fisiologia , Fitoplâncton/fisiologia , Animais , China , Nutrientes , Pectinidae , Fosfatos/análise , Estações do Ano
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA